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QUESTION 1. [27 MARKS] 
  

1.1 Let T: Pp + P, be a mapping defined by 

T (ao + ax + ap”) =5ay +a,2", where ao,a1,a2 €R 

(a) Show that T is a linear mapping. [5] 

(b) Hence, find the kernel of T. [5] 

(c) Is T one-to-one? Explain your answer. [2] 

1.2 Let T : R? — R? be a linear operator for which T(1, 1) = (1, -2) and T(1,0) = (—4, 1). 
By noting that {(1, 1), (1,0)} is a basis of R?, find a formula for T(z, y), and then use 
the formula to compute T'(5, —3). [7] 

1.3 What does it mean to say that a linear mapping T : V + W is singular? [2] 

1.4 Let T, : R? > R?, Tp : R? > R? and 7; : R? — R? be the linear mappings defined by 

Ti(x,y, z) = (z — 2, 2y), T(x, y) — (x +Y,t— y); and Ta(z, y) = (y, 0, 2). 

Find a formula for defining each of the following compositions, if possible. If it is not 

possible to have such a formula, give a reason. 

(a) Th 0 Ty [3] 

(b) T30 Tp. [3] 

QUESTION 2. [28 MARKS] 
  

2.1 Consider the linear operator T on P,, defined by 

T (ao + ay + age”) = ap + a1(2e +1) + ag(2x + 1)’, 

and the basis S = {1,2, x} in Py. 

(a) Find the matrix representation of T relative to S. [7] 

(b) By observing that S is the standard basis for P2, or otherwise, find the coordinate vector 

for p = 2 — 3x + 42? relative to the basis S, and denote it by [p]s. (2] 

(c) Use the transition matrix you obtained in part (a) above and the result in (b) to 
compute [T(p)]s. [4] 

(d) Hence, determine T(p) = T(2 — 3x + 42”). [2]



2.2 Consider the following two bases B = {u;,u2} and B’ = {v, v2} for R?, where 

w=) «= (3) =f eG 
(a) Find the transition matrix from B to B’ and denote it by Pp_,p’. [7] 

(b) Compute the coordinate vector [w]gz where w = [° | and, hence, use the 
5 

transition matrix you obtained in part (a) above to compute [w] pr. [6] 

QUESTION 3. [22 MARKS] 
  

3.1 Suppose that the characteristic polynomial of some square matrix A is found to be 

pd) = (A= 1) — 3)°(A = 4). 

(a) What is the size of the matrix A? [2] 

(b) Is the matrix A invertible? [2] 

(c) How many eigenspaces does A have? [2] 

Explain your answers. 

1 —2 8 1 -4 1 

3.2 Suppose A= {0 -1l O] andP={]{1 O O}. 

0 0 -1 0 1 O 

(a) Confirm that P diagonalises A, by finding P~! and directly computing P~'AP. [9] 

(b) Hence, find A. [7] 

QUESTION 4. [23 MARKS] 
  

4.1 Let V be a finite dimensional vector space over a field K. 

(a) What does it mean to say that a mapping f : V x V > K is a bilinear form on V? [3] 

(b) What does it mean to say that a bilinear form f, as defined in (i) above, is 

symmetric? [3] 

(c) What does it mean to say that a mapping Q: V > K is a quadratic form on V? [3] 

QUESTION 4 CONTINUES ON THE NEXT PAGE



4.2 Consider the equation 5x? — 42122 + 83 = 36. 

(a) Re-write the equation in the matrix form x Ax = 36, where A is a symmetric 
matrix. 

(b) Given that the matrix 
2 1 

v5 V5 
P= 

1 2 

V5 V5 
orthogonally diagonalises A, use a suitable variable transformation to place the 

conic in standard position and, hence, identify the conic section represented by 

the equation. 

END OF QUESTION PAPER 

[10]


